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electrodes, and of other oxyfluoride semiconductors, in fluoride-
containing solvents is currently in progress. 
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We report herein our initial results of stereoselective polyol 
synthesis via the latter process. Thus, a new route to 2,3-threo-
1,2,3—triols 4 can be realized by intramolecular hydrosilation7 of 
2-alkoxy-l-alken-3-ols 1, followed by oxidative cleavage of the 
carbon-silicon bond,8 as shown in eq 1. Since the starting ma
terials 1 are readily available from aldehydes and vinyl ethers 5a-c 
(eq 2),9 the new method should find a wide application. 
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Stereoselective chemical synthesis of carbohydrates constitutes 
a large and challenging field in modern synthetic organic chem
istry.2 Among a wide variety of methodologies for stereoselective 
construction of polyoxygenated skeletons,3 that being the most 
straightforward is the stereoselective introduction of two oxygen 
functionalities to the carbon-carbon double bonds (Scheme I, route 
a), as represented by the Sharpless epoxidation4 or osmium tet-
roxide oxidation of allyl alcohols.311'5 An alternative route may 
be achieved by anti-Markownikoff hydration of enol ether 
counterparts (Scheme I, route b), but such an approach has so 
far been rarely studied.6 
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Representative results are listed in Table I. A typical ex
perimental procedure is given for the preparation of 4b from lb. 
A mixture of lb (465 mg, 2.4 mmol), (HMe2Si)2NH (2.4 mmol), 
and ammonium chloride (ca. 3 mg) was allowed to stand at room 
temperature overnight to ensure silylation of the hydroxy group 
in lb. The excess disilazane was removed in vacuo. To the 
remaining oil was added a toluene solution of [Ptj [(CH2=CH)-
Me2Si]2Oj2]

10 (0.25 M, 48 nU 0.5 mol%), and the mixture was 
stirred at room temperature for 0.5 h. GLC analysis showed the 
completion of hydrosilation. The platinum species were removed 
by stirring the mixture with EDTA-2Na (480 mg) and hexane 
(10 mL) overnight and subsequent filtration. The filtrate was 
stripped off the solvent and treated with 15% KOH (1.0 mL) and 
30% H2O2 (1.62 mL, 14.4 mmol) in a 1:1 mixed solvent of 
MeOH/THF (ca. 14 mL) at room temperature. The oxidative 
cleavage was completed in 2 h, as monitored by TLC. The usual 
anhydrous workup80 followed by column chromatography gave 
360 mg (71% yield) of 4b (silica gel; hexane/EtOAc, 1:1, Rf0.22). 
The acetonide of 4b (2,2-dimethoxypropane, CSA catalyst, room 
temperature, 1 h; 93%) was isomerically pure by GLC and 400 
MHz NMR analysis.11 

Since the most commonly used catalyst, H2PtCl6-6H20 in i-
PrOH or in THF, was not suitable for the hydrosilation of 
acid-sensitive enol ethers,12 we examined several neutral catalysts 
and found the platinum(0)/vinylsiloxane10 to be most effective. 
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Table I. Transformation of 1 into 4 by the Intramolecular Hydrosilation-Oxidation Sequence" 
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"Carried out on 2-3 mmol scales by essentially the same procedure as that described for typical experimental procedure in text, unless otherwise 
stated. 'Compounds are racemic. 'Condition A, [Pt(I(CH2=CH)Me2Si]2OS2] (0.5 mol%), 60 0C, 2 h; condition B, [Pt(PPh3)2(CH2=CH2)] (0.3 
mol%), 50-60 0 C, 4-20 h; condition C, [Rh(acac)(cod)] (0.4 mol%), room temperature, 2.5 h. ^Conditions for oxidation: 30% H2O2, 15% KOH, 
MeOH, THF, room temperature, 2.5 h. 'Isolated, overall yield based on 1. •'"Determined by GLC analysis and/or 400 MHz 1H NMR of the 
acetonides. 'Compared with authentic samples of erythro and threo isomers prepared by hydroboration of la (ref 6). * Carried out at room 
temperature for 0.5-2 h. 'Determined after deprotonation of the THP group and protection of the primary alcohol by the /-BuMe2Si group followed 
by acetonide formation. 
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"(a) MOMOCH=CH2/iec-BuLi (1/1), THF, -78 0C ~ room temperature, overnight; (b) (1) (HMe2Si)2NH, NH4Cl (catalyst), room tem
perature, overnight; (2) [PtI[CH2=CH)Me2Si]2Oj2] (0.5 mol%), room temperature, 0.5 h; (3) EDTA-2Na, hexane, overnight; (4) 30% H2O2, 15% 
KOH, MeOH, THF, room temperature, 2.5 h; (c) (1) Me2C(OMe)2, CSA (catalyst), room temperature, 4 h; (2) separation: silica gel, hexane/ 
EtOAc (2.5/1); (d) (1) concentrated HCl, Et2O, room temperature, 5 h; (2) Ac2O, pyridine, DMAP, room temperature, 1 day. 

A rhodium complex [Rh(acac)(cod)] also exhibited a similar 
activity but showed somewhat lower stereoselectivity (entry 1). 

The most significant feature is the almost complete threo (syn) 
stereoselection in all cases, with a few exceptions. The stereo
selectivity was not largely influenced by the nature of the alkoxy 
group on the double bond, although the M O M O and the T H P O 
groups appeared to induce higher selectivity than the ethoxy group 
(entries 1, 2, and 4). Noteworthy is that the chiral carbon in the 
T H P group showed no effect on the stereoselection. Thus, the 

origin of the stereoselectivity may be attributable primarily to the 
steric repulsion between the R and R' groups in the cyclic tran
sition structures (A versus B). It should be noted that the 
stereoselectivities attained with R ' = OEt, O M O M , and O T H P 
are much higher than those observed with R' = Me (R = Ph; 
syn/anti = 6 .7 / l ) , 7 a suggesting also an importance of electronic 
effects which should be elucidated by further studies. 

The synthetic utility may be exemplified by the synthesis of 
optically pure pentitols, as shown in Scheme II. Thus, protected 
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f A) favorable ( B ) less favorable 

glyceraldehyde 713 was converted into a mixture of stereoisomers 
8 and 9 (1/1.4).14 The isomeric mixture was subjected to the 
intramolecular hydrosilation-oxidation sequence to form 10 and 
11 in 64% combined yield. The acetonides were, fortunately, 
readily separated into two optically pure stereoisomers, 12 (R^ 
0.5) and 13 (R/0.29), by simple column chromatography'(silica 
gel, hexane/EtOAc, 2.5/1).11 No 2,3-erythro isomers were ob
tained, if any only trace, indicative of the perfect syn stereoselective 
hydrosilation.15 These products, 12 and 13, were deprotected 
to free pentitols which were converted into, respectively, optically 
pure D-arabinitol pentaacetate (14) and xylitol pentaacetate 
(15).1617 It may be mentioned that the present pentitol synthesis 
is among the shortest pathways together with the highest ste-
reoselection ever reported,4a,d,g starting with optically active gly
ceraldehyde derivatives.22 Refinement and further applications 
as well as development of the procedure for the opposite stereo-
selection, 2,3-erythro (anti), are now under investigation. 
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It is remarkable that the biosynthetic origin of the simple 
phenylpropanoid skeleton of the Ephedra alkaloids (e.g., (-)-
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ephedrine (1) and (+)-pseudoephedrine (3)) is still not established. 
Label from [3-14C]phenylalanine was shown,1 30 years ago, to 

be specifically incorporated into C-I of (+)-norpseudoephedrine 
(4) in Catha edulis and, 10 years later, into C-I of (-)-ephedrine 

1 R = C H 3 

2 R = H 

H NHR 

C H 3 

: H 

(1) in Ephedra distachyaP Tritium from [ring-3H] phenylalanine 
also entered the alkaloids.2,3 It was originally thought4-6 that the 
aminophenylpropanoid system of the alkaloids was derived either 
directly from the aminophenylpropanoid system of phenylalanine4 

or by reaction of a phenylalanine-derived phenylethylamine moiety 
with a one-carbon unit.5-7 These views had to be abandoned when 
it was found2'3 that label from [2-14C]phenylalanine did not enter 
(-)-ephedrine (1) and that label from [2,3-14C]phenylalanine was 
found solely at C-I of ephedrine (from 3-14C) but not at C-2, the 
site predicted for entry of label from [2-14C]phenylalanine. It 
thus became evident that phenylalanine supplies neither the intact 
C6-C3 skeleton of the alkaloids nor a C6-C2 moiety but merely 
a C6-C1 unit. Benzoic acid and benzaldehyde, whose sidechain 
carbon atom enters C-I of (-)-ephedrine,2,3 are presumably in
termediates on the route from phenylalanine into the C6-Ci unit 
of the alkaloids. 

The origin of the C2 unit, C-2,-3, of the alkaloids remained 
unknown. None of a wide range of 14C-Iabeled substrates ([2-
14C]glycine,3 [U-14C]alanine,3 [U-14C]serine,3 [U-14C]aspartic 
acid,3 [2-14C]propionic acid,3 [14C]formic acid,3-7 [6-14C]glucose3) 
delivered radioactivity preferentially into this unit. 

We now report that this C2 unit is derived from the intact 
CH3CO- group of pyruvic acid. 

A freshly prepared solution of sodium [2,3-13C2]pyruvate (99.0 
atom % 13C, 100 mg, MSD Isotopes, Montreal, Canada) in de-
mineralized water (1 mL) containing Tween 80 (0.01 mL) was 
applied with a fine paint brush to the growing stems of mature 
plants of Ephedra gerardiana, on each of 5 successive days 
(September 1987). Thus, a total of 500 mg of labeled pyruvate 
was administered. The plants were allowed to grow for 2 more 
days and were then harvested. The aerial parts (66 g fresh weight) 
were macerated in methanol (100 mL), hydrochloric acid (4 M, 
3 mL) was added, methanol was removed, the residue was sus
pended in dilute hydrochloric acid (0.1 M, 50 mL), and the 
aqueous suspension was washed with ether (4 X 50 mL) and was 
then basified with K2CO3. The alkaloids were extracted into ether 
(4 X 50 mL) and reextracted into hydrochloric acid (1 M, 2 X 
5 mL). Evaporation of the acid extracts gave a residue containing 
base hydrochlorides. The 75.47 MHz proton noise decoupled 13C 
NMR spectrum of this sample (57 mg in 0.6 mL of D2O) is 
presented in Figure 1. 

The spectrum shows that the sample consists of the hydro
chlorides of pseudoephedrine8 (3), ephedrine8,9 (1), norpseudo-
ephedrine (4), and norephedrine8"10 (2) in the ratio 52:35:10:3 
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